FBQ1: Linear simple harmonic motion (SHM) along a straight line inclined equally to the straight lines of motion of two mutually perpendicular SHM of same \qquad amplitude and phase which are superimposed on one another Answer: *frequency*

FBQ2: The velocity at the equilibrium position in a given SHM is Answer: *maximum*

FBQ3: When a wave travels through a medium, the resistance to wave motion in a medium is called
Answer: *Impedance* .

FBQ4: In a \qquad , the magnitude of restoring force is linearly proportional to the displacement
Answer: *spring-mass system*
($)$
FBQ5: What is the frequency of oscillation of a particle whose period of oscillation is 0 . 08 seconds?
Answer: *12.5Hz*
FBQ6: The restoring force is always directed towards the \qquad , of an oscillating body.
Answer: *equilibrium position*
FBQ7: \qquad , is a type of periodic motion where the restoring force is proportional to the displacement. Answer: *Harmonic vibration*

FBQ8: In the case of simple harmonic motion (SHM), if the particle is at the mean position, then the particle is in \qquad Answer: *Stable equilibrium*

FBQ9: The number of vibrations per second executed by an oscillator in SHM is called Answer: *frequency*

FBQ10: The k / m in the above equation is replaced by $7 \% 02 \hat{\mathrm{~A}}$ angular frequency of the oscillatory motion, because they have \qquad _, Answer: *same unit*

FBQ11: When a system is said to be heavily damped, the motion of the system is said to be
Answer: *Dead beat*
FBQ12: The time taken for an oscillating particle to complete one vibration is called
Answer: *Period*
FBQ13: $x t=m \cos (w 0 t+\Pi\rceil)$, the amplitude of this equation is \qquad ,
\qquad , is defined as Maximum displacement of an oscillating body
Answer: *Amplitude *
FBQ15: Calculate the characteristic impedance offered by a thin wire of steel stretched by a force of 80 N weighing 2 g per metre.
Answer: *0.4 N/ms*
FBQ16: The shape of the curve of two orthonormal vibrations with exactly the same frequency depends on the \qquad between component vibrations Answer: *Phase difference*

FBQ17: What sound does our vocal cord create inside the throat when we talk? Answer: *Vibration*

FBQ18: When a progressive wave reaches the boundary of a finite medium or an interface between two media, waves undergo \qquad or/and \qquad . Answer: *Reflection, refraction*

FBQ19: \qquad is the minimum displacement of wave.
Answer: *Trough*
FBQ20: At an instant of time during the oscillations of an LC circuit when the current is at its maximum value. At this instant, voltage across the \qquad is zero. Answer: *capacitor*

FBQ21: Waves set up by a single, isolated disturbance are called \qquad Answer: *Pulses*

FBQ22: The simplest type of a periodic wave is a \qquad wave.
Answer: *harmonic*
FBQ23: \qquad are waves that occur at the boundary
Answer: *Rayleigh waves*
FBQ24: The displacement of a particle executing simple harmonic motion is given by, $x=0.25 \cos (4 I ̈ € t+0.078)$ in meter The amplitude is \qquad Answer: *0.25*

FBQ25: When the two individual rectangular vibrations are of slightly different frequencies, the resulting motion is more complex. True or False Answer: *True*

FBQ26: The \qquad of electromagnetic waves govern the working of a radar for detection of aircrafts.
Answer: *Reflection*
FBQ27: When a wave moves from a lighter to a denser medium, its velocity
Answer: *Decreases*
FBQ28: The
\qquad conditions are the conditions which must be satisfied at the interface where the two media meet Answer: *boundary*FBQ29: When Z2\>Z1, the second string (medium) is denser, R12 is still
\qquad , implying a phase change of Ï€ on reflection.
Answer: *Negative*
FBQ30: When resistance to motion is very strong, the system is said to be heavily \qquad Answer: *damped*
FBQ31: If the source of a wave is so far from away from an aperture that the wave front generating the diffraction pattern is regarded as plane wave front, we have \qquad diffraction
Answer: *Fraunhofer*
FBQ32: The waves produced by a motor boat sailing in water are \qquad Answer: *Transverse waves*
FBQ33: \qquad is the superposition of many waves of same amplitude and frequency, but differing slightly in phase.
Answer: *Diffraction*
FBQ34: Oscillations become damped due to force Answer: *Frictional*
FBQ35: The frequency of an LC oscillator is Inversely proportional to the \qquad of L or C Answer: *square root*
Multiple Choice Questions (MCQs):
MCQ1: For a simple harmonic oscillator,
Answer: the total energy is proportional to the square of the amplitude
MCQ2: Which of the following is not a property of a longitudinal wave?
Answer: Polarisation
MCQ3: If the amplitude of a simple harmonic oscillator is tripled, by what factor is the energy changed?
Answer: 3
MCQ4: A pendulum suspended from the roof of a train has a period T (When the train is at rest). When the train is accelerating with a uniform acceleration $\hat{a} €^{\sim} a a ̂ €^{T M}$, the time period of the pendulum will \qquad .
Answer: Remain unaffected
MCQ5: In simple harmonic motion, velocity at equilibrium position is \qquad .

MCQ6: Over-damping results to \qquad .
Answer: arrhythmic return to equilibrium
MCQ7: In simple harmonic motion (SHM), the particle is:
Answer: Alternately accelerated and retarded
MCQ8: A damped system is characterised by all of the following except \qquad .
Answer: relaxation time
MCQ9: The total energy of a particle executing SHM is proportional to \qquad .
Answer: displacement from equilibrium positionfrequency of oscillation
MCQ10: A 2.00 kg block attached to a spring is pulled a distance of 5.00 cm from the equilibrium position and released at $t=0$. If the block execute SHM with angular frequency of $9.90 \mathrm{rad} / \mathrm{s}$, find the force constant of the spring and the frequency of oscillation of the block.
Answer: 49 N/m; 2.0 Hz
MCQ11: Which of the following represent stokes law?
Answer: 6ï€rv
MCQ12: A cart of mass 0.500 kg connected to a light spring for which the force constant is $20.0 \mathrm{~N} / \mathrm{m}$ oscillates on a frictionless, horizontal air track. Calculate the maximum speed of the cart if the amplitude of the motion is 3.00 cm .
Answer: 3.0 m/s
MCQ13: A vibration of a pendulum in a viscous medium such as thick oil is an example of

Answer: Damped system

MCQ14: For a simple harmonic oscillator, the number of vibrations executed per second is called Answer: Period

MCQ15: The intensity of a wave is the measure of its \qquad .
Answer: power across a unit area perpendicular to the direction of motion
MCQ16: A student tunes a guitar by comparing the sound of the string with that of a standard tuning fork. He notices a beat frequency of 5 Hz when both sounds are superposed. He tightens the guitar string and finds the beat frequency rises to 8 Hz . What should he do to match the frequency of the string to that of the tuning fork? Answer: He must tighten the guitar string

MCQ17: A note of frequency 1200 vibrations/s has an intensity of $2.0 \hat{A} \mu \mathrm{~W} / \mathrm{m} 2$. What is the amplitude of the air vibrations caused by this sound?
Answer: 2.28

MCQ18: When the motion of particles of the medium is along the direction in which wave propagates, it is called a \qquad -.

Answer: Barrier Wave

MCQ19: Oscillations become damped due to \qquad .

Answer: Frictional force
MCQ20: The time period of a pendulum on Earth is 1.0 s . What would be the period of a pendulum of the same length on a planet with half the density but twice the radius of Earth?
Answer: 1.0s
MCQ21: Two sound waves have intensities 0.4 and 10W/m2, respectively. How many decibels is one louder than the other?
Answer: 14 Db
MCQ22: A simple pendulum has a period of 2 s and an amplitude of 50. After 20 complete oscillations, its amplitude is reduced to 40 . Find the damping constant and the time constant.
Answer: 175.5 s-1
MCQ23: The quality factor of a sonometer wire is 4,000. The wire vibrates at a frequency of 300 Hz . Find the time in which the amplitude decreases to half of its original value.
Answer: 2.94s
MCQ24: What is the ratio of the wavelength to the period of a wave?
Answer: displacement
MCQ25: A block of mass m is first allowed to hang from a spring in static equilibrium. It stretches the spring a distance L beyond the springâ $€^{T M} s$ unstressed length. If the block and spring system is set into oscillation, how will its period compare with the period of a simple pendulum of length Land mass m ?
Answer: Less than that of simple pendulum
MCQ26: A box of mass 0.2 kg is attached to one end of a spring whose other end is fixed to a rigid support. When a mass of 0.8 kg is placed inside the box, the system performs 4 oscillations per second and the amplitude falls from 2 cm to 1 cm in 30 sec . Calculate the quality factor.
Answer: 100
MCQ27: The quality factor of a tuning fork of frequency 512 Hz is $6^{*} 10^{\wedge} 4$. Calculate the time in which its energy is reduced to e-1 of its energy in the absence of damping.
Answer: 17.5s
MCQ28: The quality factor of a tuning fork of frequency 512 Hz is $6^{*} 10^{\wedge} 4$. How many oscillations will the tuning fork make in this time?
Answer: 92.5*102

MCQ29: As amplitude of resonant vibrations decreases, degree of damping \qquad . Answer: Decreases

MCQ30: An electric bell has a frequency 100 Hz . If its time constant is 2 s , determine the Q factor for the bell.
Answer: 2256
MCQ31: The dot or scalar product of a force and a displacement vectors defines
$\overline{\text { Answer: Work }}$
MCQ32: In cars, springs are damped by \qquad .
Answer: Engines
MCQ33: The distance between successive particles vibrating in phase is known as

Answer: Frequency

MCQ34: What is the ratio of the lengths of two pendulums if the ratio of their frequencies is $2: 3$?
Answer: 9/4
MCQ35: The total work done by the string of a simple pendulum during one complete oscillation
Answer: Equals the total energy of the pendulum

